499 research outputs found

    Sputtering yields exceeding 1000 by 80keV Xe irradiation of Au nanorods

    Get PDF
    Using experiments and computer simulations, we find that 80 keV Xe ion irradiation of Au nanorods can produce sputtering yields exceeding 1000, which to our knowledge are the highest yields reported for sputtering by single ions in the nuclear collision regime. This value is enhanced by more than an order of magnitude compared to the same irradiation of flat Au surfaces. Using MD simulations, we show that the very high yield can be understood as a combination of enhanced yields due to low incoming angles at the sides of the nanowire, as well as the high surface-to-volume ratio causing enhanced explosive sputtering from heat spikes. We also find, both in experiments and simulations, that channeling has a strong effect on the sputtering yield: if the incoming beam happens to be aligned with a crystal axis of the nanorod, the yield can decrease to about 100

    Use of amplified fragment length polymorphism analysis to identify medically important Candida spp., including C. dubliniensis.

    Get PDF
    Non-Candida albicans Candida species are increasingly being isolated. These species show differences in levels of resistance to antimycotic agents and mortality. Therefore, it is important to be able to correctly identify the causative organism to the species level. Identification of C. dubliniensis in particular remains problematic due to the high degree of phenotypic similarity between this species and C. albicans. The use of amplified fragment length polymorphism (AFLP) analysis as an identification method for medically important Candida species was investigated. Our results show very clear differences among medically important Candida species. Furthermore, when screening a large collection of clinical isolates previously identified on CHROMagar as C. albicans, we found a misidentification rate of 6%. AFLP analysis is universally applicable, and the patterns can easily be stored in a general, accessible database. Therefore, AFLP might prove to be a reliable method for the identification of medically important Candida species

    Enterobacter cloacae Outbreak and Emergence of Quinolone Resistance Gene in Dutch Hospital

    Get PDF
    Plasmid-mediated qnrA1 is an emerging resistance trait

    Evolution in Quantum Leaps: Multiple Combinatorial Transfers of HPI and Other Genetic Modules in Enterobacteriaceae

    Get PDF
    Horizontal gene transfer is a key step in the evolution of Enterobacteriaceae. By acquiring virulence determinants of foreign origin, commensals can evolve into pathogens. In Enterobacteriaceae, horizontal transfer of these virulence determinants is largely dependent on transfer by plasmids, phages, genomic islands (GIs) and genomic modules (GMs). The High Pathogenicity Island (HPI) is a GI encoding virulence genes that can be transferred between different Enterobacteriaceae. We investigated the HPI because it was present in an Enterobacter hormaechei outbreak strain (EHOS). Genome sequence analysis showed that the EHOS contained an integration site for mobile elements and harbored two GIs and three putative GMs, including a new variant of the HPI (HPI-ICEEh1). We demonstrate, for the first time, that combinatorial transfers of GIs and GMs between Enterobacter cloacae complex isolates must have occurred. Furthermore, the excision and circularization of several combinations of the GIs and GMs was demonstrated. Because of its flexibility, the multiple integration site of mobile DNA can be considered an integration hotspot (IHS) that increases the genomic plasticity of the bacterium. Multiple combinatorial transfers of diverse combinations of the HPI and other genomic elements among Enterobacteriaceae may accelerate the generation of new pathogenic strains

    New methods to analyse microarray data that partially lack a reference signal

    Get PDF
    BACKGROUND: Microarray-based Comparative Genomic Hybridisation (CGH) has been used to assess genetic variability between bacterial strains. Crucial for interpretation of microarray data is the availability of a reference to compare signal intensities to reliably determine presence or divergence each DNA fragment. However, the production of a good reference becomes unfeasible when microarrays are based on pan-genomes.When only a single strain is used as a reference for a multistrain array, the accessory gene pool will be partially represented by reference DNA, although these genes represent the genomic repertoire that can explain differences in virulence, pathogenicity or transmissibility between strains. The lack of a reference makes interpretation of the data for these genes difficult and, if the test signal is low, they are often deleted from the analysis. We aimed to develop novel methods to determine the presence or divergence of genes in a Staphylococcus aureus multistrain PCR product microarray-based CGH approach for which reference DNA was not available for some probes. RESULTS: In this study we have developed 6 new methods to predict divergence and presence of all genes spotted on a multistrain Staphylococcus aureus DNA microarray, published previously, including those gene spots that lack reference signals. When considering specificity and PPV (i.e. the false-positive rate) as the most important criteria for evaluating these methods, the method that defined gene presence based on a signal at least twice as high as the background and higher than the reference signal (method 4) had the best test characteristics. For this method specificity was 100% and 82% for MRSA252 (compared to the GACK method) and all spots (compared to sequence data), respectively, and PPV were 100% and 76% for MRSA252 (compared to the GACK method) and all spots (compared to sequence data), respectively. CONCLUSION: A definition of gene presence based on signal at least twice as high as the background and higher than the reference signal (method 4) had the best test characteristics, allowing the analysis of 6-17% more of the genes not present in the reference strain. This method is recommended to analyse microarray data that partially lack a reference signal

    Характеристика структурних змін в яєчку при хронічній гіпертермії

    Get PDF
    Воздействие хронической гипертермии на яички экспериментальных животных приводит к изменению микроциркуляторного русла в виде венозного полнокровия и интерстициального отека. Появляются морфологические признаки замедления процессов сперматогенеза, которые сопровождаются изменениями структур извитых семенных канальцев.Laboratory animal testes influenced by chronic hyperthermia show changes in hemomicrocirculation bed structure manifested as venous hyperemia and interstitial edema. Morphological signs of spermatogenesis slowdown accompanied by changes in convoluted somniferous tubules are observed

    Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains

    Get PDF
    Intestinal carriage of extended-spectrum beta-lactamase (ESBL) -producing bacteria in food-producing animals and contamination of retail meat may contribute to increased incidences of infections with ESBL-producing bacteria in humans. Therefore, distribution of ESBL genes, plasmids and strain genotypes in Escherichia coli obtained from poultry and retail chicken meat in the Netherlands was determined and defined as ‘poultry-associated’ (PA). Subsequently, the proportion of E. coli isolates with PA ESBL genes, plasmids and strains was quantified in a representative sample of clinical isolates. The E. coli were derived from 98 retail chicken meat samples, a prevalence survey among poultry, and 516 human clinical samples from 31 laboratories collected during a 3-month period in 2009. Isolates were analysed using an ESBL-specific microarray, sequencing of ESBL genes, PCR-based replicon typing of plasmids, plasmid multi-locus sequence typing (pMLST) and strain genotyping (MLST). Six ESBL genes were defined as PA (blaCTX-M-1, blaCTX-M-2, blaSHV-2, blaSHV-12, blaTEM-20, blaTEM-52): 35% of the human isolates contained PA ESBL genes and 19% contained PA ESBL genes located on IncI1 plasmids that were genetically indistinguishable from those obtained from poultry (meat). Of these ESBL genes, 86% were blaCTX-M-1 and blaTEM-52 genes, which were also the predominant genes in poultry (78%) and retail chicken meat (75%). Of the retail meat samples, 94% contained ESBL-producing isolates of which 39% belonged to E. coli genotypes also present in human samples. These findings are suggestive for transmission of ESBL genes, plasmids and E. coli isolates from poultry to humans, most likely through the food chain

    Yersiniabactin Reduces the Respiratory Oxidative Stress Response of Innate Immune Cells

    Get PDF
    Enterobacteriaceae that contain the High Pathogenicity Island (HPI), which encodes the siderophore yersiniabactin, display increased virulence. This increased virulence may be explained by the increased iron scavenging of the bacteria, which would both enhance bacterial growth and limit the availability of iron to cells of the innate immune system, which require iron to catalyze the Haber-Weiss reaction that produces hydroxyl radicals. In this study, we show that yersiniabactin increases bacterial growth when iron-saturated lactoferrin is the main iron source. This suggests that yersiniabactin provides bacteria with additional iron from saturated lactoferrin during infection. Furthermore, the production of ROS by polymorphonuclear leukocytes, monocytes, and a mouse macrophage cell line is blocked by yersiniabactin, as yersiniabactin reduces iron availability to the cells. Importantly, iron functions as a catalyst during the Haber-Weiss reaction, which generates hydroxyl radicals. While the physiologic role of the Haber-Weiss reaction in the production of hydroxyl radicals has been controversial, the siderophores yersiniabactin, aerobactin, and deferoxamine and the iron-chelator deferiprone also reduce ROS production in activated innate immune cells. This suggests that this reaction takes place under physiological conditions. Of the tested iron chelators, yersiniabactin was the most effective in reducing the ROS production in the tested innate immune cells. The likely decreased bacterial killing by innate immune cells resulting from the reduced production of hydroxyl radicals may explain why the HPI-containing Enterobacteriaceae are more virulent. This model centered on the reduced killing capacity of innate immune cells, which is indirectly caused by yersiniabactin, is in agreement with the observation that the highly pathogenic group of Yersinia is more lethal than the weakly pathogenic and the non-pathogenic group

    Exploring Large Document Repositories with RDF Technology: The DOPE Project

    Get PDF
    This thesaurus-based search system uses automatic indexing, RDF-based querying, and concept-based visualization of results to support exploration of large online document repositories
    corecore